

# Druckluftkältetrockner SECOTEC®

Volumenstrom 0,6 bis 14,3 m³/min





# **SECOTEC®**

## **SECOTEC-Kältetrockner**

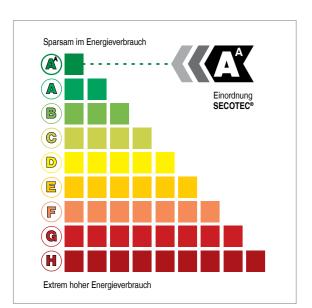
Die Kältetrockner der Baureihe SECOTEC entfeuchten die Druckluft zuverlässig und energieeffizient. Sie sind mit hochwertigen Komponenten ausgestattet und ebenso robust wie langlebig. Die Aussetzregelung ermöglicht erhebliche Energieeinsparungen.

Made in Germany: Alle SECOTEC-Kältetrockner werden im KAESER-Werk Gera gefertigt.

## Druckluft zuerlässig trocknen

Wie die Schraubenkompressoren sind auch die SECOTEC-Druckluft-Kältetrockner von KAESER KOMPRESSOREN auf höchstmögliche Zuverlässigkeit hin konzipiert, konstruiert und gebaut. Das breite Angebotsspektrum ermöglicht es zudem, für jede Anwendung die bestmöglich passende Trockner-Konstellation zu installieren.

#### **Hochwertige Komponenten**


Groß dimensionierte Bauteile, insbesondere beim Verflüssiger, bieten hohe Durchlaufsicherheit auch bei hohen Temperaturen. Hochwertige Komponenten, wie z. B. der separate, optimal an die jeweiligen Erfordernisse angepasste Edelstahl-Kondensatabscheider bieten die Gewähr für langjährige zuverlässige Funktion. Zur Wirtschaftlichkeit tragen Details wie strömungsgünstige Kupfer-Glattrohre im Druckluftkreislauf bei.

## **Hocheffizient und sparsam**

Das innovative SECOTEC-System von KAESER KOMPRESSOREN spart beim Drucklufttrocken richtig Energie: Im Gegensatz zu den meisten Kältetrocknersystemen brauchen KAESER-SECOTEC-Energiespartrockner dank ihrer hocheffizienten Aussetzregelung nur dann Energie, wenn tatsächlich Druckluft zu trocknen ist.

#### **Ideal für Druckluftstationen**

SECOTEC-Kältetrockner entsprechen EN 60204-1, sind auf elektromagnetische Verträglichkeit geprüft, erfüllen einen strengeren Industriestandard als VDE 0700 und enthalten u. a. Schaltschränke Schutzart IP 54, Sicherungen sowie einen Steuertransformator. All dies bürgt für höchstmögliche Sicherheit und Zuverlässigkeit.



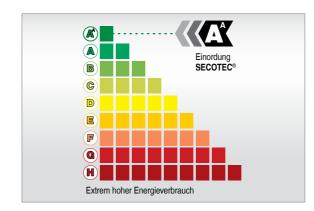
# Energie sparen Tag für Tag mit SECOTEC® Control

Der Kältespeicher hoher spezifischer Kapazität wird vom Kältekreislauf gekühlt und entzieht der Druckluft Wärme. Bei Bedarf kühlt der Kältemittelkompressor den Speicher erneut ab. Das macht SECOTEC-Kältetrockner wesentlich energieeffizienter als Systeme mit Durchlaufregelung oder mit fester Nachlaufzeit.

# **Energie sparen Tag für Tag**

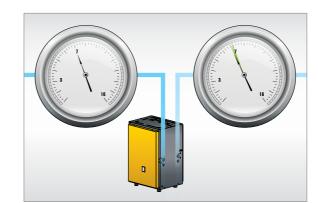


2


Abb.: SECOTEC TE 121

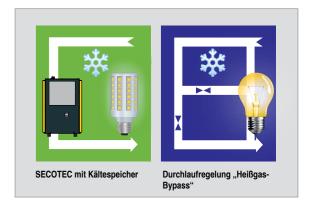


# KAESER 18


# **SECOTEC®**

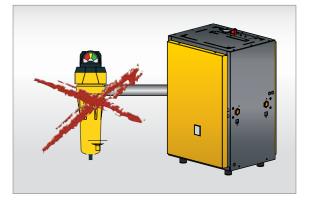
# Qualität zahlt sich aus!




## **Hocheffizient**

Der Kältespeicher hoher spezifischer Kapazität wird vom Kältekreislauf gekühlt und entzieht der Druckluft Wärme. Bei Bedarf kühlt der Kältemittelkompressor den Speicher erneut ab. Das macht SECOTEC-Kältetrockner wesentlich energieeffizienter.




## **Niedriger Druckverlust**

Die Trockner der SECOTEC-Baureihe weisen nur geringe Druckverluste auf. Das spart zusätzlich Energie, denn so ist geringerer Maximaldruck erforderlich.



## **Spart Energie: SECOTEC-Regelung**

Die SECOTEC-Aussetzregelung senkt Energiebedarf und -kosten im Vergleich zu herkömmlichen Durchlaufregelungen erheblich. Der Kältekreislauf wird nur dann zugeschaltet, wenn Kälteleistung erforderlich ist.



## **Kein Vorfilter**

Zum Betrieb eines SECOTEC-Energiespartrockners ist kein Vorfilter erforderlich (bei nicht korrodierenden Rohren). Das bedeutet deutlich niedrigere Investitions- und Wartungskosten sowie einen geringeren Differenzdruck.

4





# **SECOTEC®**

# **Hochwertig aufgebaut**



## **Effiziente Kondensatabscheider**

Korrosionsfreie Edelstahlabscheider bewirken dauerhaft zuverlässige Drucklufttrocknung. Auch im Teillastbetrieb wird das anfallende Kondensat sicher abgeschieden. Dies ist besonders bei redundant arbeitenden Trocknern in Druckluftstationen wichtig.



## Zuverlässige Kondensatableitung

Serienmäßig eingebaute elektronische Kondensatableiter vom Typ ECO-DRAIN (außer Modell TA 5) entfernen das anfallende Kondensat zuverlässig – ohne Druckverlust.



## Schaltschrank nach EN 60204-1

Die elektrische Ausrüstung ist entsprechend EN 60204-1 und EMV-Richtlinie aufgebaut. Staub- und spritzwassergeschützt (IP 54) ermöglicht sie dauerhaft besonders sicheren und zuverlässigen Betrieb.



## Betriebssicher bis +43°C

Die einwandfreie Funktion der SECOTEC-Trockner ist dank der richtigen Abstimmung der Komponenten des Kältekreislaufs bis zu Umgebungstemperaturen von +43°C gewährleistet.





# **SECOTEC®**

# **Einfach servicefreundlich**



## Wartungsfreundlicher Aufbau

Alle Bauteile sind bei SECOTEC-Kältetrocknern sehr gut zugänglich. Die Anordnung des Kondensators an der Gerätevorderseite lässt eventuelle Verschmutzungen dieses Bauteils schnell erkennen und beheben.



## Leichtes Prüfen des Kältekreislaufs

KAESER-Servicetechniker und Techniker unserer Partner verfügen über spezielles Know-How in der Kältetechnik. Sie prüfen nicht nur die Funktion des Kältetrockners, sondern über saug- und druckseitige Serviceventile auch den Kältekreislauf.



## Gut zugänglich

Die Gehäusebleche der SECOTEC-Energiespartrockner lassen sich schnell und unkompliziert abnehmen. Die Turmbauweise der Trockner vereinfacht sämtliche Service-Tätigkeiten. All dies senkt Arbeitsund Kostenaufwand für die Wartung erheblich.



## **Sichere Kondensatableitung**

Kondensatableiter gehören zu den wichtigsten Bauteilen für die zuverlässige Funktion der SECOTEC-Energiespartrockner. Deshalb ist die Wartung der elektronischen ECO-DRAIN-Kondensatableiter regelmäßig vorgesehen.



# KAESER KOMPRESSOREN

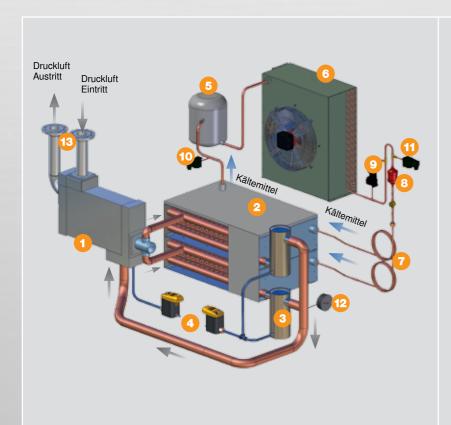
## **Ausstattung**

#### **Aufbau**

Turmbauweise mit seitlich abnehmbaren Wänden, pulverbeschichtete Verkleidungsteile, Gehäuseinnenteile aus verzinktem Stahlblech; alle verwendeten Materialien FCKWfrei; alle kalten Anlagenteile isoliert; integrierter Schaltschrank IP 54, Luft/Luft-Wärmetauscher (ab Modell TA 8), Kondensatabscheidesystem, automatischer Kondensatableiter, Lieferung mit Kältemittel- und Ölfüllung.

## **Bedienfeld**

Taupunkt-Trendanzeige, NOT-Halt-Hauptschalter, Kontrollleuchten (LED) für "Kältespeicher aktiv" und "Kältemittelkompressor EIN";


ab Baureihe TE Kontrollleuchten (LED) für "Warnung hoher Drucktaupunkt" und "Störung ECO DRAIN"; ab Baureihe TF zwei Betriebsstundenzähler.



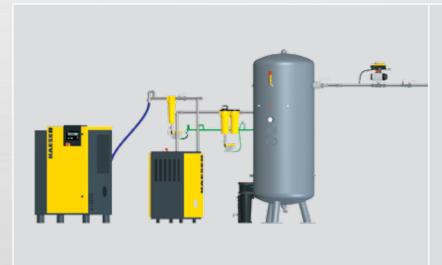
#### Kältekreislauf

Kältekreislauf mit großen Wärmetauscherflächen und Serviceventilen; SECOTEC Control-Aussetzregelung mit Kältespeicher und automatischer Taupunktregelung.

## **Aufbau**

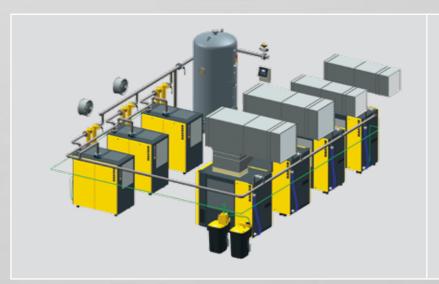


## **Beispiel: Serie TE**


- 1 Luft-/ Luft-Wärmetauscher
- Luft-/ Kältemittel-Wärmetauscher mit Kältespeicher
- 3 Kondensatabscheider
- 4 Kondensatableiter (ECO-DRAIN)
- 5 Kältemittel-Kompressor
- 6 Verflüssiger
- Kapillare
- Filtertrockner
- Hochdruckschalter
- 10 Niederdruckschalter
- 11 Lüfterdruckschalter
- 12 DTP Trend-Anzeige
- 13 Druckluft Ein-/Austritt

## **Aufstellungsbeispiel 1**




Bei weitgehend gleichmäßigen Druckluftbedarf wird der SECOTEC-Kältetrockner dem Druckluftbehälter nachgeschaltet.

## **Aufstellungsbeispiel 2**



Bei stark schwankendem Druckluftbedarf wird der SECOTEC-Kältetrockner zwischen Kompressor, Zyklonabscheider mit Kondensatableiter und Druckluftbehälter installiert.

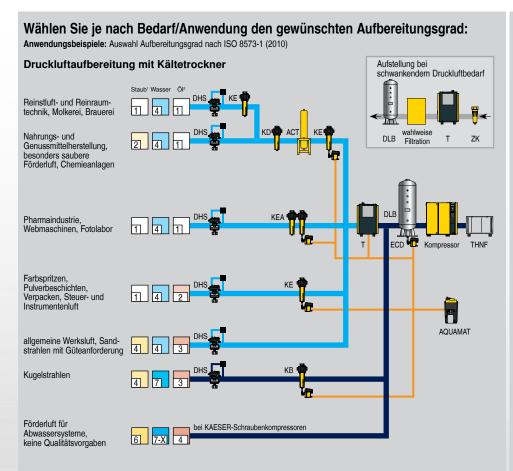
## **Aufstellungsbeispiel 3**



Große Druckluftstationen mit hohen Anforderungen an Qualität und Verfügbarkeit der Druckluft erfordern redundanten Aufbau. Von KAESER-Druckluftfachleuten ganzheitlich konzipierte und installierte komplexe Druckluftversorgungssysteme aus energieeffizienten Komponenten sprichwörtlich hoher Qualität arbeiten dauerhaft zuverlässig und wirtschaftlich bei niedrigstmöglichen Lebenszykluskosten.



## **Technische Daten**


| Modell *) | Volumenstrom<br>bei 7 bar<br>Betriebs-<br>überdruck **) | Druck-<br>verlust | Lei<br>bei 100 %<br>Volumen- | effektive<br>stungsaufnahme<br>bei 50 %<br>Volumen- | e **)<br>bei 10 %<br>Volumen- | Elek-<br>trische<br>Versorgung | Anschluss<br>Druckluft<br>(Innen-<br>gewinde) | Anschluss<br>Kondensat-<br>ablass | Abmessungen<br>B x T x H | Gewicht |
|-----------|---------------------------------------------------------|-------------------|------------------------------|-----------------------------------------------------|-------------------------------|--------------------------------|-----------------------------------------------|-----------------------------------|--------------------------|---------|
|           | m³/min                                                  | hou **\           | strom                        | strom                                               | strom                         |                                |                                               |                                   |                          | lin     |
|           |                                                         | bar **)           |                              |                                                     |                               |                                |                                               |                                   | mm                       | kg      |
| TA 5      | 0,60                                                    | 0,07              | 0,29                         | 0,16                                                | 0,04                          |                                | G ¾                                           | G ¼                               | 630 x 484 x 779          | 70      |
| TA 8      | 0,85                                                    | 0,14              | 0,27                         | 0,15                                                | 0,04                          | 230 V<br>50 Hz<br>1 Ph         |                                               |                                   |                          | 80      |
| TA 11     | 1,25                                                    | 0,17              | 0,28                         | 0,15                                                | 0,04                          |                                |                                               |                                   |                          | 85      |
| TB 19     | 2,10                                                    | 0,19              | 0,55                         | 0,30                                                | 0,08                          | 230 V<br>50 Hz                 | G 1                                           | DN 10                             | 620 x 540 x 963          | 108     |
| TB 26     | 2,55                                                    | 0,20              | 0,62                         | 0,34                                                | 0,09                          | 1 Ph                           | u i                                           | DIV 10                            | 020 X 340 X 300          | 116     |
| TC 31     | 3,20                                                    | 0,15              | 0,75                         | 0,41                                                | 0,11                          |                                |                                               |                                   |                          | 155     |
| TC 36     | 3,90                                                    | 0,16              | 0,88                         | 0,48                                                | 0,13                          | 230 V<br>50 Hz<br>1 Ph         | G 1¼                                          | DN 10                             | 774 x 660 x 1009         | 170     |
| TC 44     | 4,70                                                    | 0,15              | 0,99                         | 0,49                                                | 0,13                          |                                |                                               |                                   |                          | 200     |
| TD 51     | 5,65                                                    | 0,11              | 0,86                         | 0,47                                                | 0,13                          |                                | G 1½                                          |                                   |                          | 251     |
| TD 61     | 7,00                                                    | 0,15              | 1,10                         | 0,61                                                | 0,17                          | 400 V<br>50 Hz<br>3 Ph         | G 1/2                                         | DN 10                             | 759 x 1125 x 1187        | 251     |
| TD 76     | 8,25                                                    | 0,17              | 1,40                         | 0,77                                                | 0,21                          |                                | G 2                                           |                                   |                          | 287     |
| TE 91     | 10,15                                                   | 0,15              | 1,15                         | 0,63                                                | 0,17                          |                                |                                               |                                   |                          | 570     |
| TE 121    | 12,70                                                   | 0,18              | 1,45                         | 0,80                                                | 0,22                          | 400 V<br>50 Hz<br>3 Ph         | G 2                                           | 2 x DN 10                         | 1060 x 1520 x 1513       | 660     |
| TE 141    | 14,30                                                   | 0,24              | 1,60                         | 0,88                                                | 0,24                          |                                |                                               |                                   |                          | 660     |

 <sup>\*)</sup> Verwendetes K\u00e4ltemittel R 134 a; max. Betriebs\u00fcberdruck 16 bar (\u00fc); max. Drucklufteintritts-/Umgebungstemperatur 55/43°C
 \*\*) Leistungsdaten bei Referenzbedingungen ISO 7183, Option A1: Betriebs\u00fcberdruck 7 bar (\u00fc), Umgebungstemperatur + 25°C, Drucklufteintrittstemperatur + 35°C, Drucktaupunkt + 3°C. Bei anderen Betriebsbedingungen \u00e4ndern Betriebsbedingungen \u00e4ndern Durchsatzvolumen und Differenzdruck.

| bweichen                                                                 | der Betrieb         | süberdruc | k am Trockr | nereintritt p |      |      |                                                                                                                               |      |        |                     |      |                                                                                                               |      |      |      |  |  |
|--------------------------------------------------------------------------|---------------------|-----------|-------------|---------------|------|------|-------------------------------------------------------------------------------------------------------------------------------|------|--------|---------------------|------|---------------------------------------------------------------------------------------------------------------|------|------|------|--|--|
| Modell                                                                   | p bar(ü)            | 3         | 4           | 5             | 6    | 7    | 8                                                                                                                             | 9    | 10     | 11                  | 12   | 13                                                                                                            | 14   | 15   | 16   |  |  |
| TA-TF                                                                    | kp                  | 0,75      | 0,84        | 0,90          | 0,95 | 1,00 | 1,04                                                                                                                          | 1,07 | 1,10   | 1,12                | 1,15 | 1,17                                                                                                          | 1,19 | 1,21 | 1,23 |  |  |
| Drucklufteintrittstemperatur T <sub>e</sub>                              |                     |           |             |               |      |      | Umgebungstemperatur T <sub>u</sub>                                                                                            |      |        |                     |      |                                                                                                               |      |      |      |  |  |
| Modell                                                                   | T <sub>e</sub> (°C) | 30        | 35          | 40            | 45   | 50   | 55                                                                                                                            |      | Modell | T <sub>u</sub> (°C) | 25   | 30                                                                                                            | 35   | 40   | 43   |  |  |
| TA-TF                                                                    | k <sub>Te</sub>     | 1,20      | 1,00        | 0,83          | 0,72 | 0,60 | 0,49                                                                                                                          |      | TA-TF  | k <sub>Tu</sub>     | 1,00 | 0,99                                                                                                          | 0,97 | 0,94 | 0,92 |  |  |
| Berechnung des Trocknervolumenstroms bei geänderten Betriebsbedingungen: |                     |           |             |               |      |      | Ausgewählter Kältetrockner TB 19 mit 2,1 m³/min (V <sub>Referenz</sub> )  Max. möglicher Volumenstrom bei Betriebsbedingungen |      |        |                     |      |                                                                                                               |      |      |      |  |  |
| Beispiel                                                                 |                     |           |             |               |      |      | (ü) ⊳Tabelle ⊳k <sub>n</sub> = 1,10                                                                                           |      |        |                     |      | $V_{\text{max. Betrieb}} = V_{\text{Referenz}} \times k_{\text{p}} \times k_{\text{Te}} \times k_{\text{Tu}}$ |      |      |      |  |  |

# **Abmessungen**

| Ansicht von vorne | Ansicht von hinten | Ansicht von links | Ansicht von rechts | 3-D-Ansicht |
|-------------------|--------------------|-------------------|--------------------|-------------|
| Serie TA          |                    |                   |                    |             |
| — 484 — ·         | 779                | 630               |                    |             |
| Serie TB          |                    |                   |                    |             |
| <u></u>           | 963                | 620 —             | - I                |             |
| Serie TC          |                    |                   |                    |             |
| 660               | 1009               | 774 —             |                    |             |
| Serie TD          |                    |                   |                    |             |
| 759 —             | 1187               | 1125              |                    |             |
| Serie TE          |                    |                   |                    |             |
| 1060              | 1513               | 1520              |                    |             |



| Druckluftaufbereitu                                                          | ng mit Adsorptionstrockner | Aufstellung bei schwankendem Druckluftbedarf |
|------------------------------------------------------------------------------|----------------------------|----------------------------------------------|
| Reinstluft- und Reinraum-<br>technik, Pharmaindustrie,<br>Molkerei, Brauerei | Staub' Wasser ÖF DHS KE    |                                              |
| Chipherstellung, Optik,<br>Nahrungs- und<br>Genussmittelherstellung          | 11 1:3 11 DHS KE KD ACT    | DLB wahlweise AT3 KE ZK                      |
| Lackieranlagen                                                               | 2 1.3 11 DHS               | KBE4                                         |
| Prozessluft,<br>Pharmaindustrie                                              | TI 1:3 TI DHS KEA          | Kompressor THNF                              |
| Besonders trockene<br>Förderluft, Farbspritzen,<br>Feinstdruckregler         | 11 1-3 21 DHS KD KD        | AQUAMAT                                      |

Erläuterungen ACT Aktivkohleadsorber AQUAMAT AQUAMAT ΑT Adsorptionstrockner DHS Druckhaltesystem DLB Druckluftbehälter ECO-DRAIN ECD Aktivkohlefilter, Adsorption KΔ KB Koaleszenzfilter, Basic KBE Extra Combination KD Staubfilter, Dust Koaleszenzfilter, Extra ΚE KEA Carbon Combination Kältetrockner THNF Stofftaschenfilter ZK Zvklonabscheider

Druckluft-Qualitätsklassen nach ISO 8573-1(2010):

| Feststoffe / Staub |                                                          |                     |                     |  |  |  |  |  |
|--------------------|----------------------------------------------------------|---------------------|---------------------|--|--|--|--|--|
| Klasse             | max. Partikelzahl je m³ * einer<br>Partikelgröße d in μm |                     |                     |  |  |  |  |  |
|                    | $0,1 \leq d \leq 0,5$                                    | $0.5 \le d \le 1.0$ | $1,0 \le d \le 5,0$ |  |  |  |  |  |
| 0                  | individuelle Festlegungen nach<br>Rücksprache mit KAESER |                     |                     |  |  |  |  |  |
| 1                  | ≤ 20.000                                                 | ≤ 400               | ≤ 10                |  |  |  |  |  |
| 2                  | ≤ 400.000                                                | ≤ 6.000             | ≤ 100               |  |  |  |  |  |
| 3                  | nicht definiert                                          | ≤ 90.000            | ≤ 1.000             |  |  |  |  |  |
| 4                  | nicht definiert                                          | nicht definiert     | ≤ 10.000            |  |  |  |  |  |
| 5                  | nicht definiert                                          | nicht definiert     | ≤ 100.000           |  |  |  |  |  |
| Klasse             | Partikel Konzentration C <sub>p</sub> in mg/m³ *         |                     |                     |  |  |  |  |  |
| 6                  | 0 < C₀ ≤ 5                                               |                     |                     |  |  |  |  |  |
| 7                  |                                                          | $5 < C_p \le 10$    |                     |  |  |  |  |  |
| Χ                  | C <sub>o</sub> > 10                                      |                     |                     |  |  |  |  |  |

| Wasser |                                                               |
|--------|---------------------------------------------------------------|
| Klasse | Drucktaupunkt, in °C                                          |
| 0      | individuelle Festlegungen nach<br>Rücksprache mit KAESER      |
| 1      | ≤ - 70 °C                                                     |
| 2      | ≤ – 40 °C                                                     |
| 3      | ≤ - 20 °C                                                     |
| 4      | ≤ + 3 °C                                                      |
| 5      | ≤ + 7 °C                                                      |
| 6      | ≤ + 10 °C                                                     |
| Klasse | Konzentration flüssiger Wasseranteil C <sub>w</sub> in g/m³ * |
| 7      | C <sub>w</sub> ≤ 0,5                                          |
| 8      | 0,5 < C <sub>w</sub> ≤ 5                                      |
| 9      | 5 < C <sub>w</sub> ≤ 10                                       |
| Χ      | C <sub>w</sub> >10                                            |

| Öl     |                                                                   |
|--------|-------------------------------------------------------------------|
| Klasse | Gesamtöl-Konzentration (flüssig, aerosol + gasförmig), in mg/m³ * |
| 0      | individuelle Festlegungen nach<br>Rücksprache mit KAESER          |
| 1      | ≤ 0,01                                                            |
| 2      | ≤ 0,1                                                             |
| 3      | ≤ 1,0                                                             |
| 4      | ≤ 5,0                                                             |
| Χ      | > 5,0                                                             |

<sup>\*)</sup> bei Referenzbedingungen 20°C, 1 bar(a), 0% Luftfeuchte

#### KAESER KOMPRESSOREN SE

<sup>Perreichbare Partikelklasse bei fachkundig ausgeführter Verrohrung und Inbetriebnahme.

Perreichbarer Gesamtölgehalt bei Verwendung empfohlener Kompressoröle und unbelasteter Ansaugluft.

Nach warmregenerierten Adsorptionstrocknern sind Hochtemperaturfliter und ggl. ein Nachkühler erforderlich.

Bei kritischen Anwendungen, die hohe Druckultfreinheiten erforderir (z.B. in den Bereichen Elektronik und Optik) wird der Einsatz einer Extra Combination (Filterkombination aus KB- und nachgeschaltetem KE-Filter) empfohlen.</sup>